
Chapter 2

Mathematical Methods

‡ 2.1. Motivation

Actually  enough  already  has  been  written  about  the  solving  methods  of  linear  equations  (e.g.  [Metz1996],

section  3.5,  p.  23-26).  Nevertheless  in  this  chapter  the  application  of  Fourier  and  Laplace  techniques for

generating propagators and Green's functions is indicated shortly and extended.

The main reason to this chapter is the elucidation of the applicability of Dirac's delta function as an analytical

function  being  consistent  due  to  function  theory.  Further  more  is  to  be  shown,  how by  use  of  it  also  more

complicated linear  differential  equations (also  fractional)  can be solved eventually,  especially concerning the

calculation of momenta.

The  results  being  presented  here  give  a  fundamental theoretical  extension,  without  which  a  consistent

realization  of  the  software  package  FractionalCalculus would  not  have  been  possible.  The  following

elaboration presents the basics in such a way, that knowledge of the software package indeed is useful, but not

necessary to be able to follow the content.

‡ 2.2. Dirac's Delta Function

ü 2.2.1. Singular Integrals

If a definite integral diverges for a certain choice of the parameters, then thoroughly it makes sense to present

the whole solution in a possibly united form.

For  the presentation of  these potential  singular  integration results  also among others Dirac's delta  function is

suitable.  Nevertheless  yet  today some  mathematicians  meet  it  with  suspicion,  because  the  transition  into  the

singularity is done non-continually.



ü 2.2.2. Fourier Transformation of Number One

ü 2.2.2.1. Properties of Fourier Transformation

The Fourier transformation of a constant can be reduced to the one of number one. The Fourier integral itself

reads concerning this elaboration and at the Mathematica version 3.0 (There are also deviations from this in

other elaborations concerning the multiplicator and the sign, e.g. at Mathematica 4.0):

(2.1)  Fx
k@ f @xDD := ‡

-•

•

Exp@+‰ k xD f @xD ‚ x .

With symmetrical functions f @-xD ä f @xD the Fourier transformation can convert to the cosine transformation:

(2.2)  F
c

x

k@ f @xDD := ‡
0

•

Cos@k xD f @xD ‚ x .

Further properties of the Fourier transformations are listed in appendix B of this elaboration.

ü 2.2.2.2. Application of the Mean Value Theorem

The  Fourier  transformation  of  number  one  leads  from equation (2.1)  to  the  double  of  equation  (2.2),  where

now a parametric integral is to be solved:

(2.3)  Fx
k@1D = 2 F

c

x

k@1D = 2 ‡
0

•

Cos@k xD ‚ x = 9• k = 0 ,

0 k π 0 .

The  calculated  results  can  be  understood  well  via  the  mean value  theorem ([Rot1954],  II.  §13.9,  p.  86-87),

because for k π 0 the mean value of infinitely many periods of the cosine function is determined. The integral

of finitely many cosine periods anyway gives zero.

Other  accesses  to  the  integral  (2.3)  result  indeterminated  terms.  The  formulation  of  an  unequivocal  result

indeed is possible, but not accepted everywhere.
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ü 2.2.2.3. Definition of the Delta Function due to Dirac

P.  A.  M.  Dirac  now gives  a  function,  that  has  got  the  properties  of  equation  (2.3)  and  is  able  to  give back

number  one  by  inverse  Fourier  transformation.  This  delta  function  is  defined  by  the  following  three

assumptions ([Dir1927], p. 625-626):

(2.4)  d@xD = 0 xπ 0 ,

(2.5)  ‡
-•

•

‚ xd@xD = 1 ,

(2.6)  d@xD = d@ » x »D .

In  the  original  elaboration  of  Dirac  there  is  a  misprint  with  the  formulation  of  definition  (2.5),  which

unfortunately intensifies the possibilities of critizism to his publication.

A consequence being consistent due to function theory results from the definitions (2.4) to (2.6) in a complex

phase j of the integral depending on the direction of the integration path, which is presented here already in a

possibly general useful presentation:

(2.7)  ‡
0

Exp@‰ jD
d@xD ‚ x= J Exp@‰ jD

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
2

N .

It  should  be  mentioned,  that  already Dirac  in  his  elaboration  discusses  the  delta  function  having  a  complex

argument ([Dir1927], eq. (1), p. 626); this result as yet is fundamental:

(2.8)  ‡
-•

•

f @xD d@a- xD ‚ x= f @aD .

ü 2.2.2.4. Determination of the Multiplicator of the Fourier Transformation

Because  the  delta  function  plays  an  important  role  with  the  solution  theory  of  linear  equations,  a  sensible

convention of mathematics consists in setting the Fourier transform of the delta function to number one. By the

above given definition of the Fourier transformation (2.1) in connection to equation (2.8) results the following:

(2.9)  Fx
k@d@xDD = 2 F

c

x

k@d@xDD = 2 ‡
0

•

Cos@k xD d@xD ‚ x= 1 .
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Therefore the Fourier  transform of number one is proportional to Dirac's delta  function. The multiplicator of

proportionality  results  from  the  inverse  Fourier  transformation  by  use  of  the  self-inversity  of  the  cosine

transformation and equation (2.7):

(2.10)  HF -1Lkx@2 p d@kDD = 1
ÄÄÄÄÄ
p
 F

c

k

x@2p d@kDD = 2 p
ÄÄÄÄÄÄÄÄÄÄ
p

 ‡
0

•

Cos@k xD d@kD ‚k = 1 .

Thus  the  delta  function  gives  clearness,  if  the  multiplicators  of  the  Fourier  transformation  are  determined

according to definition (2.1). This clearness at the latest is necessary with the use of computer algebra.

ü 2.2.3. Mellin Transformation of Number One

ü 2.2.3.1. Result from Fourier Transformation

Already Mellin  directs to  a close  relationship  between Fourier  and Mellin transformation ([Mel1910],  §8,  p.

324).  An  explicit  carrying-out  of  the  corresponding transformations  results  by  use  of  the  substitutions

t Æ -Log@xD and z Æ ‰ z:

(2.11)  

f @xD = f @„-tD = 1
ÄÄÄÄÄÄÄÄÄÄ
2 p

 ‡
-•

•

„-‰ z t ‚ z ‡
-•

•

f @„-tD „‰ z t ‚ t =

=
-‰
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
2 p ‰

 ‡
-•

•

x‰ z  ‚ z ‡
0

•

f @xD x-‰ z-1 ‚ x=

=
1

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
2 p ‰

 ‡
-‰•

‰•

x-z ‚ z ‡
0

•

f @xD xz-1 ‚ x .

The provisional results of these transformations (2.11) result by the residue (2.10) and definition (2.6) the Mellin

transform  of  number  one,  at  which  calculation  the  author  was  assisted  kindly  by  Professor  Dr.  W.

Wonneberger (Ulm):

(2.12)  ‡
0

•

xz-1 ‚ x= 2 p d@zD = 2 p d@‰ zD = 2 p d@zD .

34 Chapter 2. Mathematical Methods



ü 2.2.3.2. Mellin Residue of the Delta Function

The inverse Mellin transform of the result (2.12) yields by the integral (2.7) according to the equations (2.11):

(2.13)  
1

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
2 p ‰

 ‡
-‰•

‰•

d@zD x-z ‚z= J 1
ÄÄÄÄÄÄÄÄÄÄ
2p

N .

Therefore in the meaning of Mellin transformation even the residue of the delta function is unequivocal in spite

of  the  direction  dependency  of  the  integral  (2.7).  The  calculation  of  this  Mellin  residue can  fail  by  the

formulae, that otherwise are valid for continuously attainable singularities.

ü 2.2.3.3. Independent Confirmation

For  not  to  establish  inconsistencies,  there  is  great  value  in  getting  a  new  result  by  several  derivations.

Therefore  the  Mellin  transform  of  number  one  (2.12) now  is  to  be  confirmed  on  an  independent  way.  The

integral itself ranks as being divergent for all real z.

For z π 1 the Mellin transform of number one yields within the integration intervals 0 £ x £ 1 and 1 £ x £ •

both of the following functions, which can be continued analytically on their part:

(2.14)  
‡

0

•

xz-1 ‚ x= ‡
0

1

xz-1 ‚ x+‡
1

•

xz-1 ‚ x=
1
ÄÄÄÄÄ
z
-

1
ÄÄÄÄÄ
z

,

Re@zD > 0 and Re@zD  0 .

The word "and"  in the result (2.14) confuses again and again, because indeed the nearby fallacy is nourished,

that the real part of z would be obliged to be positive and negative simultaneously, but indeed it elucidates, that

for  the  present  there  are  two  different  validity  intervals  to  be  distinguished  simultaneously,  before  each

analytical  continuation of  the  partial  results  takes place.  The given integral  already caused  difficulties  to  the

author  concerning his  diploma thesis  ([Süd1997],  sections  3.1.4.3  and  6.3.3,  p.  42-44 and 93-94),  which are

solved now even for computer algebra.

For z ä 0 the Mellin transform of number one yields logarithmic singularities, which cannot be removed by an

analytical continuation of convergent partial integrals:

(2.15)  ‡
0

• ‚ x
ÄÄÄÄÄÄÄÄÄÄ
x

= Log@xD »0• = •+• =• .
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Since  Mellin transformation constantly yields  results  without  poles according to  the established function and

integral  theory,  always  an  analytical  continuation  within  Mellin  space  into  the  singularities  of  the  result  is

necessary,  that  inverse  Mellin transform can take place via  the residual theorem by use of these singularities

(cmp. [Mel1910], validity intervals of eq. (40), p. 316).

When implementing  Mellin  transformation  to  computer algebra,  the  author  very  soon realized  this  property,

because the singularities of the residual calculation always were located beyond the calculated validity interval

of the Mellin transform.

As a retaining rule generally results, that the validity intervals of Mellin space indeed are correct for integral

convergence, but are to be ignored otherwise! Maybe especially this property of Mellin transformation keeps

many mathematicians from getting down to the possibilities of this transformation.

ü 2.2.3.4. Consequences from the Theorem by Mellin

The  theorem  by  Mellin  calls  a  pair  of  function  and  Mellin  transform  to  be  reciprocal  functions  and  tells

([Mel1910], S. 323):

"One of two reciprocal functions can be identical

to null just if also the other one is equal to zero only."

In  application  to  the  just  now  by  use  of  all  calculation  rules  successfully  gotten  results  (2.12)  and  (2.13)  the

theorem by Mellin is the proof of existence to Dirac's delta function.

The  author  thinks  the  theorem  by  Mellin  to  be  one  of  the  most  difficult  to  understand  and  most  unknown

theorems of  analytical  mathematics.  For  its  understanding an additional  lecture  function  theory  III would  be

necessary.
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ü 2.2.4. The Momenta of the Delta Function

ü 2.2.4.1. Connection between Mellin Transformation and Momenta

The  momentum  integrals  of  order  m  of  a  distribution  function  f @xD  are  defined  the  following  ([BrS1987],

section 5.1.3, p. 667 top):

(2.16)  xmèèèè =  HxmL > =  HxmL, f @xD > := ‡
-•

•

xm f @xD ‚ x .

The Mellin transformation is given by the following integral ([Mel1910], §8, eq. (51), p. 319):

(2.17)  Mx
z@ f @xDD := ‡

0

•

xz-1 f @xD ‚ x .

Symmetrical  momenta  are  calculated  with  the  absolute  values  ̋ x ˝m  instead  of  xm,  where  the  integration

bounds  presuppose  a  symmetrical  distribution  function  f @xD = f @ ˝ x ˝D.  The  following  relation  between

symmetrical momenta < ˝ x ˝m > and Mellin transformation of a function results:

(2.18)  

 ˝ x ˝m > =  ˝ x ˝m, f @ ˝ x ˝D > =

= 2 Mx
m+1@ f @xDD = 2 ‡

0

•

xm+1-1 f @xD ‚ x .

ü 2.2.4.2. Calculation of the Delta Momenta

The symmetrical momenta of the delta function yield with the equations (2.18), (2.7) and (2.6):

(2.19)   ˝ x ˝m, d@xD > = 9 1 m= 0 ,

0 m> 0 .

More  generally  formulated  the  Mellin  transformation (2.17)  of  the  delta  function  according  to  relation (2.7)

yields a quite peculiar function:

(2.20)  Mx
z@d@xDD = i

k
jjj 0z-1

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
2

y
{
zzz .

Function  (2.20)  is  quite  peculiar,  because  the  inverse  Mellin  transformation  of  0z  again  leads  back  to  the

singulary delta function.
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ü 2.2.4.3. Possibilities of Enlarging Function Theory

In the face of results like (2.20) also an experienced mathematician reaches his limits. The formal going on of

calculation with the formally gotten formulae always yields sensible results,  where even a computer does not

find inconsistencies of this possibility.

The results (2.19) and (2.20) with (2.18) suggest the conclusion to define the function values of 0z  for z ä 0 non-

continually  to  be  number  one.  A  direct  access  via  limit  calculation  of  the  kind  z Æ 0  then  naturally  is  not

possible, but moreover a motivation via an analogy to the Hausdorff dimension ([Non1996], eq. (2.4), p. 37) of

parametric limits:

(2.21)  0z := lim
dÆ 0

dz .

The peculiarity of the 0z  function is, that the absolute value of the function is unequivocal for all z,  while the

complex phase especially for pure imaginary z π 0 keeps ready a lot of surprises.

Therefore  when  estimating  integral  convergence,  result  expressions  of  the  form  xz  give  a  clear  answer  for

Re@xD > 0 and eventually still for x ä 0 and Re@zD > 0. Already the case x ä 0 and z ä 0 causes discussions,

which within each of the corresponding context of the result can be finished, yet.

The use of definition (2.21) to be an analytical function of z seems to be as non-usual as the discussion of 
è!!!!!!!
-1

five hundred years ago. To work off unsettled questions of this kind may be the aim of later elaborations. The

analytical relevance of the 0z function is yet pointed out by the momenta of the delta function (2.19).

38 Chapter 2. Mathematical Methods



‡ 2.3. Laplace and Fourier Transformation

ü 2.3.1. Known Relations

ü 2.3.1.1. Plan of Action

With  Laplace  transformation  ([BrS1987],  section  4.4.3.1,  p.  634)  of  fractional  diffusion  equations  the

differentiation  theorem and  the  convolution theorem are  sufficient  to  change the  integrated  form of  the  time

fractional differential equation (1.26) into an ordinary differential equation of the spacial coordinate x.

The  integration  constants,  that  are  mentioned  in  Oldham/Spanier  ([OS1974],  section  8.1,  p.  133-136)  in

connection to  fractional  derivatives,  own no physical  relevance,  which results  by the discussion of  fractional

initial  value  problems  (references  see  chapter  1.3.2  of  this  elaboration).  At  the  software  package

FractionalCalculus they optionally can be switched on via the option OldhamSpanierConstantsÆTrue during

carrying-out of Laplace transformation.

The  subsequent  Fourier  transformation  of  these  ordinary  differential  equation  succeeds,  if  all  initial value

problems  for  the  first  are  set  to  Dirac's  delta  function.  In  the  easiest  case  (also  with  fractional  diffusion

equations!) an algebraic equation is gotten, whose inverse Fourier and inverse Laplace transformation lead to

an  unequivocal  fundamental  system  of  propagators,  which  in  the  context  of  this  elaboration  is  called  the

optimized fundamental system.

The total  solution results  by carrying-out  each of  a Fourier  convolution of  the initial  value problems and the

corresponding fundamental propagators.

Other solution techniques of linear differential  equations e.g.  lead to Frobenius'  normal form ([HT1956], eq.

(11c), p. 188) of a fundamental system.

Chapter 2. Mathematical Methods 39



ü 2.3.1.2. Idea of Propagator

The  propagator  is  part  of  the  optimized  fundamental system  of  a  partial  linear  differential  equation.  The

corresponding initial value problem always is Dirac's delta function at time t Æ 0.

With the solution strategy being discussed here the time coordinate is to be handled differently from the spacial

coordinates,  because  the  initial  value  problem  describes  the  spatial  distribution  f @x, t Æ 0D  and  not~also

being mathematically possible~the time development of dynamics at a very certain location f @x Æ 0, tD.

The Fourier transformation of a differential equation can be understood via partial integration, if the so-called

natural  boundary  conditions,  namely  the  disappearance  of  the  function  and  its  derivatives  at  infinity,  are

fulfilled.  With propagators this demand because of the start at t ä 0 by a delta function is to be discussed as

fulfilled.

ü 2.3.1.3. Idea of Green's Function

In  opposite  to  a  propagator  a  Green's  function  describes  the  standardized  solution  of  an  inhomogenous

differential  equation.  Due  to  Hort/Thoma  ([HT1956], §107-108,  p.  178-182)  hereby  always  one  additional

integration is to be done in comparison to homogeneous equations.

To  get  the  basic  function,  which  is  used  for  an  integration  with  the  general  inhomogenity  or  steering  size

s@x, tD, again Dirac's delta function, this time being time dependent, is used.

The gotten Green's function in the easiest case is subjected to a time Laplace convolution and a spatial Fourier

convolution to get the general inhomogeneous solution of the original equation.
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ü 2.3.2. Prolongations

ü 2.3.2.1. Laplace Transformation of the Delta Function

Due to equation (2.7) Dirac's delta function has got an unequivocal Laplace transform:

(2.22)  Lt
p@d@tDD = ‡

0

•

„-p t d@tD ‚ t = J 1
ÄÄÄÄÄ
2
N .

A  lot  of  publications  deviate  from  this  result.  Exemplary  the  references  may  be  given  only,  that  occur at

Mathematica 3.0 in a program comment to the package Calculus`DiracDelta:̀ Hoskins [Hos1979] or Antosik,

Mikusinski and Sikorski [AMS1973] yield the result number one.

ü 2.3.2.2. Consequences for Computer Algebra

A mathematician calculating with pencil and paper is able to hold out a situative context of the delta function

consistently to the end. In opposite a computer algebra system must lead to calculation errors with this kind of

specialities. By this reason the demands for mathematics to be formulated consistently are principally heavier

by use of computer algebra than by the traditional calculation with pencil and paper.

Because  of  the  situative  context  with  the  Laplace  transformation  of  the  delta  function  actually  no  mature

computer algebra system exists, where the delta function would be implemented consistently or uncontradicted.

With  Mathematica yet  it  has  been possible  to  reach a  consistent  implementation of  the  delta  function in  the

context  of  this  elaboration.  Now the result  is  not  called DiracDelta,  what  would  describe the historical  facts

better, but SymmetricalDelta, because this function name had not been used, yet.

In  this  context  mainly  an  "open"  computer  algebra  system  turns  out  to  be  useful,  because  the  user  of  the

program  in  the  case  of  need  must  practise  himself  the  necessary  corrections  of  the  system.  The  software

package Mathematica is "half open", what means, that eventual changes of functions are to be implemented by

an own name.
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ü 2.3.2.3. Laplace Convolution with Delta Function

The  Laplace  convolution  with  a  delta  function  according  to  equation  (2.7)  yields  half  of  the  convoluted

function:

(2.23)  ‡
0

t

d@tD f @t - tD ‚t = ‡
0

t

d@t - tD f @tD ‚ t = i
kjj

f @tD
ÄÄÄÄÄÄÄÄÄÄÄÄÄ

2
y
{zz .

Certainly it  is  not  very practical  to  keep  always ones mind to  this  factor  1ÄÄÄÄ
2

 when  comparing with  literature.

Moreover  it  is  suitable  to  exchange the function 2 d@tD  instead of  d@tD  with  the inhomogenity of  the equation

when applying Laplace transformation. The Laplace transform of this then is number one, and Green's function

results to be that function, whose Laplace convolution with the steering size yields the general solution.

ü 2.3.2.4. Space and Time Dependent Steering Functions

With space and time dependent steering functions s@x, y, z, tD the independency of the coordinates is used thus

leading to the following more general inhomogenity to get Green's function:

(2.24)  s@x, y, z, tDÆ 2 d@xD d@yD d@zD d@tD .

On  equations  with  spatial  independent  analytical  coefficients,  e.g.  the  fractional  diffusion  equation  (1.26),

Green's function is contained within the fundamental system of the propagators. This results from the Laplace

transformation of a corresponding example equation for b Œ Í :

(2.25)  

Lt
pA ∂b f @x, tD
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

∂ tb
-

∂2 f @x, tD
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

∂x2
= 2 d@xD d@tDE

ñ pb Lt
p@ f @x, tDD -‚

n=0

b-1

d@xD pb-1-n -
∂2Lt

p@ f @x, tDD
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

∂x2
= d@xD .

The  total  identity  of  one  of  the  propagators  to  Green's  function thus is  shown for  n ä b- 1.  More  difficult

inhomogeneous  equations  eventually  can  be  handled  via  the  homogeneous  solution  (there  are  more  solution

techniques for this!).
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ü 2.3.2.5. Space Dependent Analytical Coefficients

If the analytical coefficients of an equation are space dependent, a special handling is necessary to calculate the

general solution. For this the integral of a Fourier convolution is viewed for the first:

(2.26)  f @xD *g@xD = ‡
-•

•

f @x- aD g@aD ‚a= ‡
-•

•

f @aD g@x- aD ‚a .

If now the propagator is build up, then at starting time t Æ 0 a normal delta convolution according to equation

(2.8) is available. However at later time now no more a Fourier convolution is to be calculated, but an integral,

which summarizes the spacial dependent propagators having the starting distribution as weight.

Certainly spacial dependent propagators are yielded only, if also accordingly d@x-aD+d@x+aD
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

2
 is set instead of d@xD

to  be  a  symmetrical  initial  value  problem.  The  same handling  also  is  to  be  noted  at  the  building  of  Green's

function.  In  the  Fourier  convolution  (2.26)  both  the  propagators  and  also  Green's  function  depend  on  the

integration distance a  only.  With asymmetric  equations also an asymmetric initial  value problem of the form

d@x - aD is to be started with to find the propagators.

These connection are of value to solve corresponding Fokker Planck equations (chapter 1.2.2.3 and 2.4.1.1 of

this  elaboration).  Here  they shall  not  be  discussed further  on,  because they would  exceed  the  setting  of  this

elaboration.
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ü 2.3.2.6. Fourier Transformation of the Riesz Operator

The Riesz operator is presented in Samko et al. ([SKM1993], eqs. (12.1)|(12.4), p. 214) in such a way, that all

symmetric and asymmetric variants of the Riesz operators can be build up therewith.

When discussing diffusion without shifting of the focal point the following definition is sufficient, which also

can be understood as Fourier convolution with the power of the absolute value function, and thus leads to the

Mellin transformation of the cosine function ([Obe1974], formulae I.1.2 and I.5.2, p. 11 and 42; [EMOT1953],

eqs. 1.2(7) and 1.2(15), p. 3 and 5):

(2.27)  

Fx
k@- » x »-m-1D = -‡

-•

•

„‰ k x H » x »L-m-1 ‚ x=

= -2 ‡
0

•

Cos@ » k » xD x-m-1 ‚ x= -Mx
-m@Cos@ » k » xDD =

= -H » k »Lm G@-mD CosA- m p
ÄÄÄÄÄÄÄÄÄÄÄ
2

E = -
2-m 

è!!!!
p  G@- mÄÄÄÄÄ2 DÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

GA m+1ÄÄÄÄÄÄÄÄÄÄÄ2 E  H » k »Lm .

The  Riesz  operator  to  be  found  here  is  to  be  build  up  in  such  a  way,  that  for  m Æ 2  results  the  Fourier

transform of the second derivative, namely -k2 as a multiplicator.

This  aim is  reached  by the  following  Fourier  convolution,  where  connects  to  the  Riesz  operator  an  integral

order -m and m here shall present the fractional differentiation order:

(2.28)  

-Rx
-m@ f @xDD = -

2m GA m+1ÄÄÄÄÄÄÄÄÄÄÄ2 E
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄè!!!!
p  G@- mÄÄÄÄÄ2 D

 ‡
-•

• f @yD
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ˝ x- y ˝m+1

 ‚ y=

= HF -1LkxA- … k H »m F Lxk@ f @ » k »DDE .

The formulation of this operator leads back to the elaboration of V. Seshadri and B. J. West [SWe1982]. The

Fourier transformation of the Riesz operator being possible for driftless diffusion is given by equation (2.28).
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‡ 2.4. Mellin Transformation

ü 2.4.1. Difference Equations

ü 2.4.1.1. Generating Linear Difference Equations

Laplace  transformation  of  a  time  fractional  diffusion  equation  also  leads  for  space  dependent  diffusion

parameters~e.g. dependent of power terms due to the notation of Risken ([Ris1984], chap. 1.2.1, p. 4-5)~to

an ordinary differential equation of the spatial coordinate, whose inhomogeneous solution is asked for~in the

case of the given example to the basic equations of the Bessel functions.

Mellin transformation of an ordinary homogeneous differential equation leads to the corresponding difference

equation ([Mes1959],  chap.  X.1,  p.  133-134).  If  relation (2.25)  is  established  at  least  for  special  initial  value

problems  (e.g.  for  d@x - 0D),  then  the  solution  of  the  homogeneous  difference  equation  of  Mellin  space  is

enough to solve the originally inhomogeneous differential equation.

ü 2.4.1.2. Solution to Linear Difference Equations

There  are  solution  techniques  (see  [Mes1959])  of  homogeneous  and  inhomogeneous  linear  difference

equations.  Sometimes  it  is  possible  to  guess  one  of the  homogeneous  solutions  of  a  difference  equation,

especially  if  the  solving  function  of  the  original  equation  is  a  Fox's  H-function.  Namely  then  the  Mellin

transform of the solution only consists of fractions of Euler's gamma function having no sum terms. Detailed

information about this can be found in the diploma thesis of the author ([Süd1997], sections 5.1.1 and 6.1, p.

65-66 and 75-79).

In Mellin space it is easy to convert by combinatorics and clever cancelling a yielded main solution by use of

the  reflection  formula  ([EMOT1953],  eqs.  1.2(6)  and 1.2(7),  p.  3)  into  further  main  solutions  (cmp.

[Mes1959],  rem.  at p.  41) due to the sampling theorem ([Mar1986],  chap.  6,  p.  127-131).  This possibility is

dealed with by Mellin by the name "proper substitution" ([Mel1910], end of §5, p. 314).

Within  the  setting  of  this  elaboration  fortunately  it  has  not  been  possible  to  try  out  the  efficiency  of  the

difference equations. In the diploma thesis of S. Hoffmann [Hoff2000] there are several realizations of solution

techniques and a lot of interesting references to this topic.
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ü 2.4.1.3. Fox's H-functions

The inverse Mellin transformation of fractions of Euler's gamma functions having no sum terms according to

Dixon/Ferrar [DF1936] yields a class of functions, which today [MS1978] is called Fox's H-function, because

C. Fox [Fox1961] did not know about the elaboration of his predecessors.

Happen fractions of Euler's gamma functions having sum terms to be a solution, then Baumann's ¿-functions

[SBN1998] result, a generalization of Saxena's I-function [Sax1982].

The presentation of Fox's H-function to be an inverse Mellin transform results ([SBN1998], eq. (1), p. 401) for

positive A j and B j with 8m, n, p, q< Œ Í0 in:

(2.29)  

Hp,q

m,nAx
ƒƒƒƒƒƒƒƒƒƒ
88a1, A1<, ..., 8an, An<< » 88an+1, An+1<, ..., 8ap, Ap<<
88b1, B1<, ..., 8bm, Bm<< » 88bm+1, Bm+1<, ..., 8bq, Bq<<E =

=
1

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
2 p ‰

 ‡
-‰•

‰• H¤ j=1
m G@b j + B j  zDL H¤ j=1

n G@1- a j - A j  zDL
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄH¤ j=m+1

q
G@1- b j - B j  zDL H¤ j=n+1

p
G@a j + A j  zDL  x

-z ‚ z.

Even more complicated Mellin Barnes integrals result,  if  Riemann's or even Hurwitz's zeta function or better

the yet  more general  Lerch's zeta  or  phi  function occurs in Mellin space to  be a solution (examples for  this:

[Obe1974],  formula  I.3.24|I.3.26  and  A.16,  p.  28  and  272).  The  numerical  series  of  this  kind  of  functions

usually is won via the residual theorem by use of the preparatory elaborations of Mellin [Mel1910] and Barnes

[Bar1908].

The essential difference between a power series and an analytical function due to Barnes [Bar1908] consists in

the  fact,  that  a  function  has  got  an  analytical  continuation  possibly  to  the  whole  complex  number  area and

corresponding analytical properties, while the power series is interesting for numerics.

In the case of Bessel's differential equation being mentioned as an example, the Mellin transformation yields an

easy difference equation, where the inverse Mellin transformation of altogether four main solutions yields not

only  an optimized  fundamental  system of  two  modified  Bessel  functions  of  first  kind,  but  also  the  modified

Bessel function of second kind being very important for the propagators. The fourth main solution cannot be

subjected to the inverse Mellin transformation.
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ü 2.4.2. Momenta Calculation from Laplace Transforms

ü 2.4.2.1. Motivation

Since  in  this  elaboration  rather  the  discussion  of  the  theoretical  variance  in  comparison to  measured  data  is

dealed with, it is important to calculate the momenta of a solution function reliably also for the case, that the

solution function itself already is too complicated, namely exceeds the setting of Fox's H-functions.

Since momenta according to equation (2.18) are related to Mellin transformation, their calculation principally is

easier  than  the  calculation  of  a  completed  solution function.  The  deeper  reason  for  this  is  the  convolution

theorem of  Mellin  transformation ([Obe1974],  formulae  I.1.13|I.1.15,  p.  12),  which  e.g.  converts  the Mellin

transform of a Fourier convolution into a Fox's H-function, yet.

ü 2.4.2.2. Calculation

Since the Laplce transform of the solution function already has got the spatial coordinates, the momenta of the

Laplace transform also can be calculated directly. From the corresponding result the inverse Laplace transform

into the time coordinate is to be build.

According to Oberhettinger ([Obe1974], eq. (c'), p. 3) a Mellin transform of a Laplace transformation results to

be

(2.30)  Mp
y@Lt

p@ f @x, tDDD = G@yD Mt
1-y@ f @x, tDD ,

which also enables the calculation of the inverse Laplace transformation via Mellin transformation.

If  e.g.  the  momenta  calculation  of  a  Laplace  transform yields  a  Fox's  H-function,  then because of  the  result

(2.30)  also  the  moment  of  the  distribution  results  to  be  a  Fox's  H-function.  The distribution  function itself  is

much more complicated in this case.
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ü 2.4.3. Momenta Calculation from Fourier Transforms

ü 2.4.3.1. Direct Calculation

If the Fourier transform of a distribution function is known only, then the momenta calculation turns out to be

much more tricky than with the Laplace transform, because now the spatial coordinate itself is not known at all.

In  spite  of  this  for  symmetrical  Fourier  transforms (which  are  to  be  discussed  preferably  with  driftless

diffusion)  generally  it  is  possible  to  derive  the  following  relation,  indeed  via  Mellin  transformation of  an

inverse  Fourier  transform  by  use  of  the  Fubini  theorem  ([SKM1993],  eq.  (1.32),  p.  9),  which  arranges  the

swapping of integrals, where again as in relation (2.27) the Mellin transform of the cosine function occurs:

(2.31)  
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p G @- mÄÄÄÄÄ2 D .

The Mellin transform of the Fourier transform must be very suitable, that the result (2.31) for m Æ 2 allows the

calculation of variance.

ü 2.4.3.2. Momenta of a Fourier Convolution

The  momenta  of  a  Fourier  convolution  result  to  a  fundamentally  easier  theorem  (appendix  A  of  this

elaboration), which here at least shall be mentioned:

(2.32)   HxmL, f @xD *g@xD > =‚
k=0

m

 
i
kjjj
m

k
y
{zzz  xk, f @xD >  xm-k, g@xD > .

The  difference  between  the  equations  (2.31)  and  (2.32)  mainly  consists  in  the  fact,  that  on  the  one  hand  the

symmetrical momenta and on the other hand the factual momenta are calculated.
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‡ 2.5. Summary

Dirac's  delta  function  being  important  to  the  variance  theorem (1.14)  very  much  has  been  introduced  as an

analytical function of the complex number area being consistent due to function theory.

The use of the delta function when applying Laplace and Fourier transformations to a fractional linear equation

has been dealed with. The results are optimized fundamental systems of propagators, which eventually already

contain the Green's function of the inhomogenity.

The Riesz operator due to B. J. West [SWe1982] being useful for the discussion of driftless diffusion has been

introduced as an elegantly arranged Fourier convolution.

The direct  Mellin transformation of  a  linear  differential  equation often leads to  a difference equation, whose

solution manifold can widely exceed beyond the Mellin transforms of Fox's H-functions.

The calculation of momenta from Laplace or Fourier transforms of a distribution function has been introduced.

This  deal  simplifies  the  analytical  discussion  enormously,  since  the  variance  of  a  solution  propagator

principally belongs to an easier function class than the solution propagator itself.
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