Chapter 2

Mathematical Methods

m 2.1. Motivation

Actually enough already has been written aboutshleing methods of linear equations (e.g. [Metz]996
section 3.5, p. 23-26). Nevertheless in this chapite application of Fourier and Laplace techniqtms
generating propagators and Green's functions isatet shortly and extended.

The main reason to this chapter is the elucidatiotie applicability of Dirac'slelta functionas an analytical
function being consistent due to function theoryrtker more is to be shown, how by use of it alsmem
complicated linear differential equations (alsocfranal) can be solved eventually, especially comiog the

calculation of momenta.

The results being presented here give a fundameheadretical extension, without which a consistent
realization of the software packadé&actionalCalculus would not have been possible. The following
elaboration presents the basics in such a waykttmtledge of the software package indeed is uskéilnot
necessary to be able to follow the content.

m 2.2. Dirac's Delta Function

m 2.2.1. Singular Integrals

If a definite integral diverges for a certain cheoiaf the parameters, then thoroughly it makes senpeesent
the whole solution in a possibly united form.

For the presentation of these potential singulgegiration results also among others Dirac's deitation is
suitable. Nevertheless yet today some mathemasiaiaeet it with suspicion, because the transitida the
singularity is done non-continually.
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m 2.2.2. Fourier Transformation of Number One

m 2.2.2.1. Properties of Fourier Transformation

The Fourier transformation of a constant can beiged to the one of humber one. The Fourier inteitgalf
reads concerning this elaboration and atNtsthematicaversion 3.0 (There are also deviations from this i
other elaborations concerning the multiplicator #relsign, e.g. dalathematica4.0):

00

FXL£[x1] :=f Expl+ik x| f[X]dX. (2.1)

With symmetrical functiong [—-x] == f [x] the Fourier transformation can convert to the m®siansformation:
ck 00
FLFIX] = f Cogk x] f[x]dX. (2.2)
0

Further properties of the Fourier transformatioreslisted in appendix B of this elaboration.

m 2.2.2.2. Application of the Mean Value Theorem

The Fourier transformation of number one leads feaation (2.1) to the double of equation (2.2)ereh
now a parametric integral is to be solved:

K ck o0 o) k=0,
Flll = 2F,[1] = zf Cogk X dx = | (2.3)
0

0 k+0.
The calculated results can be understood well hamean value theorem ([Rot1954], Il. §13.9, p.88%-
because fok # 0 the mean value of infinitely many periods of tlesioe function is determined. The integral
of finitely many cosine periods anyway gives zero.

Other accesses to the integral (2.3) result indetated terms. The formulation of an unequivocaule
indeed is possible, but not accepted everywhere.
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m 2.2.2.3. Definition of the Delta Function due to Dac

P. A. M. Dirac now gives a function, that has du¢ properties of equation (2.3) and is able to digek
number one by inverse Fourier transformation. Ttédta function is defined by the following three
assumptions ([Dir1927], p. 625-626):

o[x]=0 x+0, (2.4)
fmclxé[x] =1, (2.5)
o[x] = o[ Ix]]. (2.6)

In the original elaboration of Dirac there is a pnist with the formulation of definition (2.5), wth
unfortunately intensifies the possibilities of i@igm to his publication.

A consequence being consistent due to functionryhessults from the definitions (2.4) to (2.6) ircamplex
phasep of the integral depending on the direction of ithtegration path, which is presented here already i
possibly general useful presentation:

Btiel (Explig]
fo 6[x]clx_( > ) 2.7)

It should be mentioned, that already Dirac in Haberation discusses the delta function having mptex
argument ([Dirl1927], eq. (1), p. 626); this resdtyet is fundamental:

fmf[x]é[a—x]dx= fla]. (2.8)

m 2.2.2.4. Determination of the Multiplicator of theFourier Transformation

Because the delta function plays an important with the solution theory of linear equations, asiiele
convention of mathematics consists in setting therier transform of the delta function to numbee 0By the
above given definition of the Fourier transformat{@.1) in connection to equation (2.8) resultsfailowing:

ck 00
FXI6[X]] = 2F [6[X]] = 2 f Cogk X 6[x]dx=1. (2.9)
0
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Therefore the Fourier transform of number one @pprtional to Dirac's delta function. The multiglior of
proportionality results from the inverse Fourieansformation by use of the self-inversity of thesine
transformation and equation (2.7):

(77_1)E[27T5[k]] = %;‘k[Zﬂ&[k]] = % fmCOS{k Xl o[kldk=1. (2.10)
0

Thus the delta function gives clearness, if thetiplidators of the Fourier transformation are detiered
according to definition (2.1). This clearness @&tldtest is necessary with the use of computebedge

m 2.2.3. Mellin Transformation of Number One

m 2.2.3.1. Result from Fourier Transformation

Already Mellin directs to a close relationship beem Fourier and Mellin transformation ([Mel19108, $.
324). An explicit carrying-out of the corresponditigansformations results by use of the substitstion
t - —Log[x] and{ » iz

fix]=fle']= 2—]-” foo@_i»(tcl{fmf[e_t] etdt =

_E‘ 00 00 )
e itd fx]x < tdx=
5 Lox §fo [X] x X (2.11)

1 i 0o 00
= — f x‘zclzf fIx] X tdx.
2mi —i oo 0

The provisional results of these transformation&{Presult by the residue (2.10) and definitior6{2he Mellin
transform of number one, at which calculation théhar was assisted kindly by Professor Dr. W.
Wonneberger (Ulm):

fmxz‘ldx=27r6[{]=27r6[i2]=27T5[Z]- (212)
0
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m 2.2.3.2. Mellin Residue of the Delta Function

The inverse Mellin transform of the result (2.1®lgs by the integral (2.7) according to the equradi(2.11):

1o
z—mﬁmd[z]x alz_(z—ﬂ). (2.13)

Therefore in the meaning of Mellin transformatioee the residue of the delta function is unequivotapite
of the direction dependency of the integral (2. Ve calculation of thidMellin residue can fail by the
formulae, that otherwise are valid for continuouetainable singularities.

m 2.2.3.3. Independent Confirmation

For not to establish inconsistencies, there is tguwadue in getting a new result by several derosi
Therefore the Mellin transform of number one (2.1 is to be confirmed on an independent way. The
integral itself ranks as being divergent for adlie

For z # 1 the Mellin transform of number one yields withhretintegration interval® = x <1 and1 < X < oo
both of the following functions, which can be contd analytically on their part:

* z-1 ' z-1 * z-1 1 1
XrdXx= XTrdX+ X tdx=—-—,
0 0 1 zZ Z

Rez] >0 and R¢z] < 0.

(2.14)

The word ‘and" in the result (2.14) confuses again and againabse indeed the nearby fallacy is nourished,
that the real part of would be obliged to be positive and negasimaultaneouslybut indeed it elucidates, that
for the present there are two different validityeivals to be distinguishedimultaneously before each
analytical continuation of the partial results talgace. The given integral already caused diffiesilto the
author concerning his diploma thesis ([Sud1997¢tisas 3.1.4.3 and 6.3.3, p. 42-44 and 93-94), Wwiaie
solved now even for computer algebra.

For z== 0 the Mellin transform of number one yields logamith singularities, which cannot be removed by an
analytical continuation of convergent partial iregg:

< dX
f 7=Log[x]|8°=oo+oo=oo. (2.15)
0
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Since Mellin transformation constantly yields résuwhithout poles according to the established foncand
integral theory, always an analytical continuatisithin Mellin space into the singularities of thesult is
necessary, that inverse Mellin transform can tdkeepvia the residual theorem by use of these Enjas
(cmp. [Mel1910], validity intervals of eq. (40), 16).

When implementing Mellin transformation to compuédgebra, the author very soon realized this ptyper
because the singularities of the residual calaatiways were located beyond the calculated wglidterval
of the Mellin transform.

As a retaining rule generally results, that Hadidity intervals of Mellin spacendeed are correct for integral
convergence, budre to be ignoredtherwise! Maybe especially this property of Meltransformation keeps
many mathematicians from getting down to the padgs#s of this transformation.

m 2.2.3.4. Consequences from the Theorem by Mellin

The theorem by Mellin calls a pair of function ahtellin transform to be reciprocal functions andlgel
([Mel1910], S. 323):

"One of two reciprocal functions can be identical
to null just if also the other one is equal to zerdy."

In application to the just now by use of all caltidn rules successfully gotten results (2.12) éhd3) the
theorem by Mellin is theroof of existence to Dirac's delta function

The author thinks the theorem by Mellin to be ofiehe most difficult to understand and most unknown
theorems of analytical mathematics. For its undedihg an additional lecturfeinction theory Illwould be
necessary.
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m 2.2.4. The Momenta of the Delta Function

m 2.2.4.1. Connection between Mellin Transformationad Momenta

The momentum integrals of ordar of a distribution functionf [x] are defined the following ([BrS1987],
section 5.1.3, p. 667 top):

XM= <(xM>= <M, f[x]> := fooxm fIX]dX. (2.16)

—00

The Mellin transformation is given by the followiingegral ([Mel1910], 88, eq. (51), p. 319):
MK = f XL f[x]dx. (2.17)
0

Symmetrical momenta are calculated with the absolatiues 1 x 1™ instead ofx™, where the integration
bounds presuppose a symmetrical distribution fonctf[x] = f[1 Xx1]. The following relation between
symmetrical momenta 1 x 1™ > and Mellin transformation of a function results:

< ix1M>= < 1 xi" fluixi]> =

. (2.18)
=2 MM f[x]] = 2f XML f[x]dx.
0
m 2.2.4.2. Calculation of the Delta Momenta
The symmetrical momenta of the delta function yisith the equations (2.18), (2.7) and (2.6):
m s B 1 m=0,
<axim [x]>_{0 m>0. (2.19)

More generally formulated the Mellin transformati¢h17) of the delta function according to relati7)
yields a quite peculiar function:

Oz—l
ME[S[X]] = (T) . (2.20)

Function (2.20) is quite peculiar, because the reweMellin transformation of* again leads back to the
singulary delta function.
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m 2.2.4.3. Possibilities of Enlarging Function Theory

In the face of results like (2.20) also an exper@hmathematician reaches his limits. The formahgon of
calculation with the formally gotten formulae alwayields sensible results, where even a computes dot
find inconsistencies of this possibility.

The results (2.19) and (2.20) with (2.18) suggestdonclusion to define the function values6for z == 0 non-
continually to be number one. A direct access it Icalculation of the kindz - 0 then naturally is not
possible, but moreover a motivation via an anatogye Hausdorff dimension ([Non1996], eq. (2.4)3p) of
parametric limits:

0% := lim 6.

lim 5 (2.21)

The peculiarity of thé?* function is, that the absolute value of the fumetis unequivocal for alt, while the
complex phase especially for pure imagirnagy 0 keeps ready a lot of surprises.

Therefore when estimating integral convergencellrexpressions of the forme? give a clear answer for
Re[x] > 0 and eventually still fox == 0 andRe[z] > 0. Already the cas& == 0 andz == 0 causes discussions,
which within each of the corresponding contexthaf tesult can be finished, yet.

The use of definition (2.21) to be an analyticaldiion ofz seems to be as non-usual as the discussioh-df
five hundred years ago. To work off unsettled goestof this kind may be the aim of later elabanasi. The
analytical relevance of tH@& function is yet pointed out by the momenta ofdeéa function (2.19).
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m 2.3. Laplace and Fourier Transformation

m 2.3.1. Known Relations

m 2.3.1.1. Plan of Action

With Laplace transformation ([BrS1987], section .3.4, p. 634) of fractional diffusion equations the
differentiation theorem and the convolution theorara sufficient to change the integrated form & time
fractional differential equation (1.26) into an mrary differential equation of the spacial coordea

The integration constants, that are mentioned idh@h/Spanier ([OS1974], section 8.1, p. 133-136) in
connection to fractional derivatives, own no phgbielevance, which results by the discussion aftfonal
initial value problems (references see chapter21.8f this elaboration). At the software package
FractionalCalculusthey optionally can be switched on via the opt@dhamSpanierConstantdrue during
carrying-out of Laplace transformation.

The subsequent Fourier transformation of thesenardi differential equation succeeds, if all initislue

problems for the first are set to Dirac's deltacfion. In the easiest case (also with fractionddudion

equations!) an algebraic equation is gotten, whiogerse Fourier and inverse Laplace transformatian to
an unequivocal fundamental system of propagatohéchwin the context of this elaboration is callda t
optimized fundamental system

The total solution results by carrying-out eachadfourier convolution of the initial value problemsd the
corresponding fundamental propagators.

Other solution techniques of linear differentiabiations e.g. lead t6robenius' normal forn{[HT1956], eq.
(11c), p. 188) of a fundamental system.
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m 2.3.1.2. Idea of Propagator

The propagator is part of the optimized fundamenstatem of a partial linear differential equatidre
corresponding initial value problem always is Disagelta function at time— O.

With the solution strategy being discussed herdithe coordinate is to be handled differently frtira spacial
coordinates, because the initial value problem rilese the spatial distributiori[x, t - 0] and not-also
being mathematically possiblehe time development of dynamics at a very cettaiation f [x —» O, t].

The Fourier transformation of a differential eqaatcan be understood via partial integration, é $o-called
natural boundary conditionsnamely the disappearance of the function andiétsvatives at infinity, are
fulfilled. With propagators this demand becausehef start at == 0 by a delta function is to be discussed as
fulfilled.

m 2.3.1.3. Idea of Green's Function

In opposite to a propagator a Green's function rdest the standardized solution of an inhomogenous
differential equation. Due to Hort/Thoma ([HT195@107-108, p. 178-182) hereby always one additional
integration is to be done in comparison to homogasequations.

To get the basic function, which is used for aregnation with the general inhomogenity or steersige
9%, t], again Dirac's delta function, this time beingdidependent, is used.

The gotten Green's function in the easiest caseliected to a time Laplace convolution and a apBbturier
convolution to get the general inhomogeneous swiudf the original equation.
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m 2.3.2. Prolongations

m 2.3.2.1. Laplace Transformation of the Delta Functin

Due to equation (2.7) Dirac's delta function hasagounequivocal Laplace transform:
p * -pt 1
Ll = | e Ptoltdt= (—) . (2.22)
0 2

A lot of publications deviate from this result. Exglary the references may be given only, that oatur
Mathematica3.0 in a program comment to the pack@gdculus’DiracDelta’ Hoskins [Hos1979] or Antosik,
Mikusinski and Sikorski [AMS1973] yield the resaiimber one.

m 2.3.2.2. Consequences for Computer Algebra

A mathematician calculating with pencil and paeable to hold out a situative context of the deltection
consistently to the end. In opposite a computeelaiy system must lead to calculation errors with kind of
specialities. By this reason the demands for madiiemnto be formulated consistently are princip&igavier
by use of computer algebra than by the traditicaédulation with pencil and paper.

Because of the situative context with the Lapla@mgformation of the delta function actually no unat
computer algebra system exists, where the del@imwould be implemented consistently or uncatitited.
With Mathematicayet it has been possible to reach a consistenteimgntation of the delta function in the
context of this elaboration. Now the result is nalled DiracDelta, what would describe the historical facts
better, buSymmetricalDeltabecause this function name had not been used, yet

In this context mainly an "open" computer algebyatesm turns out to be useful, because the useheof t

program in the case of need must practise himbelfrtecessary corrections of the system. The saftwar
packageMathematicais "half open”, what means, that eventual chawgdsnctions are to be implemented by

an own name.
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m 2.3.2.3. Laplace Convolution with Delta Function

The Laplace convolution with a delta function ading to equation (2.7) yields half of the convotite
function:

t t f [t]
j;é[‘l’] f[t—r]drz[)é[t—r] f[‘r]d‘z':(—z—). (2.23)
Certainly it is not very practical to keep alwayses mind to this facto% when comparing with literature.
Moreover it is suitable to exchange the functibéit] instead of§[t] with the inhomogenity of the equation
when applying Laplace transformation. The Laplaaagform of this then is number one, and Greenistiion
results to be that function, whose Laplace conimiuvith the steering size yields the general sofut

m 2.3.2.4. Space and Time Dependent Steering Funct®n

With space and time dependent steering functsprsy, z, t] the independency of the coordinates is used thus
leading to the following more general inhomogemitget Green's function:

X, Y, Z t] - 268[x] [yl 6[2] It] . (2.24)

On equations with spatial independent analyticaffo@ents, e.g. the fractional diffusion equati¢h?26),
Green's function is contained within the fundamiesyatem of the propagators. This results fromltaplace
transformation of a corresponding example equdto € N :

p[aﬁf[x,t] 2 fx t]
SPTY ax2

26[x] 6[t]]

(2.25)
LA

e =0[X].

B-1
= pPLIfIx - ) o0 pPn
n=0
The total identity of one of the propagators to €'e function thus is shown for== g8 — 1. More difficult
inhomogeneous equations eventually can be handéethe homogeneous solution (there are more salutio
techniques for this!).
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m 2.3.2.5. Space Dependent Analytical Coefficients

If the analytical coefficients of an equation apace dependent, a special handling is necessasnldolate the
general solution. For this the integral of a Faucenvolution is viewed for the first:

f[x]*g[x]zf f[x—a]g[a]da:f flalg[x—a]da. (2.26)

If now the propagator is build up, then at startiinge t - 0 a normal delta convolution according to equation
(2.8) is available. However at later time now norena Fourier convolution is to be calculated, butrdaegral,
which summarizes the spacial dependent propadadeiag the starting distribution as weight.

Certainly spacial dependent propagators are yietdy if also accordingl)wll is set instead af[x]

to be a symmetrical initial value problem. The samedling also is to be noted at the building océ&r's
function. In the Fourier convolution (2.26) bothetlpropagators and also Green's function depenchen t
integration distancea only. With asymmetric equations also an asymmaetiital value problem of the form
d[x — a] is to be started with to find the propagators.

These connection are of value to solve correspgnBokker Planck equations (chapter 1.2.2.3 and 2.4f
this elaboration). Here they shall not be discudsetther on, because they would exceed the settfnifpis
elaboration.
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m 2.3.2.6. Fourier Transformation of the Riesz Operair

The Riesz operator is presented in Samko et 8KM[E®93], eqgs. (12.1(12.4), p. 214) in such a way, that all
symmetric and asymmetric variants of the Riesz atpes can be build up therewith.

When discussing diffusion without shifting of thecél point the following definition is sufficiemyhich also
can be understood as Fourier convolution with thegy of the absolute value function, and thus legadfie
Mellin transformation of the cosine function ([OB&4], formulae 1.1.2 and 1.5.2, p. 11 and 42; [EMKO%3],
egs. 1.2(7) and 1.2(15), p. 3 and 5):

Fo- X = = [ ax=

(e8]

_ ~ —u—-1 _ _AHU _
= L Cog | k| X] x dx=-MH[Cod | k| X]] = 2.27)
24 \r T-4]
e
el
The Riesz operator to be found here is to be bufidin such a way, that fon - 2 results the Fourier
transform of the second derivative, namek? as a multiplicator.

= ~(IKIY TT-] Co§ -~ = (KD

This aim is reached by the following Fourier comtmn, where connects to the Riesz operator argrate
order—u andu here shall present the fractional differentiatioder:

: T[22~ fy
“RATI= Vr T[-4] j:oo | X =yl 4y=

(2.28)
= (F Y~ |k (F PRLELIKI].

The formulation of this operator leads back to ¢kaboration of V. Seshadri and B. J. West [SWe198R¢
Fourier transformation of the Riesz operator bgiagsible for driftless diffusion is given by eqoati(2.28).
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m 2.4. Mellin Transformation

m 2.4.1. Difference Equations

m 2.4.1.1. Generating Linear Difference Equations

Laplace transformation of a time fractional diffusi equation also leads for space dependent diffusio
parameters-e.g. dependent of power terms due to the notatid®isken ([Ris1984], chap. 1.2.1, p. 4-5i0

an ordinary differential equation of the spatiabitinate, whose inhomogeneous solution is asked-ifothe
case of the given example to the basic equatiotisedBessel functions.

Mellin transformation of an ordinary homogeneou$edential equation leads to the correspondingedéffice

equation ([Mes1959], chap. X.1, p. 133-134). lfaten (2.25) is established at least for speciaiainvalue
problems (e.g. fob[x —0]), then the solution of the homogeneous differeagaation of Mellin space is
enough to solve the originally inhomogeneous déffitial equation.

m 2.4.1.2. Solution to Linear Difference Equations

There are solution techniques (see [Mes1959]) afdgeneous and inhomogeneous linear difference
equations. Sometimes it is possible to guess onthefhomogeneous solutions of a difference equation
especially if the solving function of the originatjuation is a Fox's H-function. Namely then the IMel
transform of the solution only consists of fracBoof Euler's gamma function having no sum termsailel
information about this can be found in the diplotiesis of the author ([Sid1997], sections 5.1.1 éad p.
65-66 and 75-79).

In Mellin space it is easy to convert by combine®iand clever cancelling a yielded main solutigrube of
the reflection formula ([EMOT1953], eqgs. 1.2(6) add2(7), p. 3) into further main solutions (cmp.
[Mes1959], rem. at p. 41) due to the sampling teeo([Mar1986], chap. 6, p. 127-131). This posdipiis
dealed with by Mellin by the name "proper subsiitoit ((Mel1910], end of 85, p. 314).

Within the setting of this elaboration fortunatetyhas not been possible to try out the efficiemtythe
difference equations. In the diploma thesis of 8fftdann [Hoff2000] there are several realizatiohsaution
techniques and a lot of interesting referencehitotopic.
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m 2.4.1.3. Fox's H-functions

The inverse Mellin transformation of fractions afil&'s gamma functions having no sum terms accgrttin
Dixon/Ferrar [DF1936] yields a class of functioméiich today [MS1978] is called Fox's H-function,chese
C. Fox [Fox1961] did not know about the elaboratidihis predecessors.

Happen fractions of Euler's gamma functions hagug terms to be a solution, then Baumatwfanctions
[SBN1998] result, a generalization of Saxena'swkfion [Sax1982].

The presentation of Fox's H-function to be an isegevlellin transform results ([SBN1998], eq. (1)4p1) for
positive A; andB; with {m, n, p, g} € Ng in:

7_{mvn[x {{a]_, Al}l ey {ani A’(‘I}}| {{an+11 A’(‘I+1}i ey {ap, Ap}}] _
pa {{b]_, Bl}i CEE) {bm, Bm}}| {{bm+1, Bm+l}1 CEET) {bQI Bq}} B

(2.29)

X?dz.

1 fm (IT21 Ty + By 2 (T}=1 T - aj - Aj 2))
2708 Jico (I omea TTL = by = B Z) (IThpea Dl + A 2))

Even more complicated Mellin Barnes integrals restiRiemann's or even Hurwitz's zeta functionbetter
the yet more general Lerch's zeta or phi functiooues in Mellin space to be a solution (examplestliis:
[Obe1974], formula 1.3.24.3.26 and A.16, p. 28 and 272). The numericalesedf this kind of functions
usually is won via the residual theorem by useheffireparatory elaborations of Mellin [Mel1910] éBaknes
[Bar1908].

The essential difference between a power seriesmarahalytical function due to Barnes [Bar1908]sisis in
the fact, that a function has got an analyticaltiooration possibly to the whole complex number amed
corresponding analytical properties, while the posegies is interesting for numerics.

In the case of Bessel's differential equation benegtioned as an example, the Mellin transformafields an
easy difference equation, where the inverse Méllinsformation of altogether four main solutionslgs not
only an optimized fundamental system of two modif@essel functions of first kind, but also the niiedi
Bessel function of second kind being very importfamtthe propagators. The fourth main solution cdrive
subjected to the inverse Mellin transformation.



Chapter 2. Mathematical Methods 47

m 2.4.2. Momenta Calculation from Laplace Transforms

m 2.4.2.1. Motivation

Since in this elaboration rather the discussiorheftheoretical variance in comparison to measudadd is
dealed with, it is important to calculate the motaeof a solution function reliably also for the eathat the
solution function itself already is too complicatedamely exceeds the setting of Fox's H-functions.

Since momenta according to equation (2.18) ardeklep Mellin transformation, their calculation qeipally is
easier than the calculation of a completed solufimrction. The deeper reason for this is the caumiah
theorem of Mellin transformation ([Obel1974], formell.1.131.1.15, p. 12), which e.g. converts the Mellin
transform of a Fourier convolution into a Fox'suthdtion, yet.

m 2.4.2.2. Calculation

Since the Laplce transform of the solution functédready has got the spatial coordinates, the mtarathe
Laplace transform also can be calculated direEtflgm the corresponding result the inverse Lapleargsform
into the time coordinate is to be build.

According to Oberhettinger ([Obel1974], eq. (c)3pa Mellin transform of a Laplace transformatiesults to
be

MBLLPLEIX 1] =TTyl MY [ ], (2.30)
which also enables the calculation of the inveraplace transformation via Mellin transformation.

If e.g. the momenta calculation of a Laplace tramefyields a Fox's H-function, then because of rémult
(2.30) also the moment of the distribution restdtsbe a Fox's H-function. The distribution functigself is
much more complicated in this case.
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m 2.4.3. Momenta Calculation from Fourier Transforms

m 2.4.3.1. Direct Calculation

If the Fourier transform of a distribution functi@known only, then the momenta calculation twuasto be
much more tricky than with the Laplace transforecduse now the spatial coordinate itself is notknat all.

In spite of this for symmetrical Fourier transforrshich are to be discussed preferably with disgle
diffusion) generally it is possible to derive thalldwing relation, indeed via Mellin transformatiaf an
inverse Fourier transform by use of the Fubini theo ([SKM1993], eq. (1.32), p. 9), which arranghe t
swapping of integrals, where again as in relatthh@%) the Mellin transform of the cosine functictors:
X" ik x _

- (Lofum,t]e dk)dx =

00

<(IxI™, O] 1] > =f

—00

4

=5 ), (fo Cog | K| x] X dx)f[k,t]dk: (2.31)

_oum i3+ 2 TMM K, t]

Vr =31

The Mellin transform of the Fourier transform mbst very suitable, that the result (2.31) o 2 allows the
calculation of variance.

m 2.4.3.2. Momenta of a Fourier Convolution

The momenta of a Fourier convolution result to adamentally easier theorem (appendix A of this
elaboration), which here at least shall be mentlone

m

m
< (XM, f[x]=g[X] > = Z (k) <X f[X]> <xX™K g[x]> . (2.32)
k=0

The difference between the equations (2.31) an8R)2mainly consists in the fact, that on the onadhthe
symmetrical momenta and on the other hand thedhntamenta are calculated.
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m 2.5. Summary

Dirac's delta function being important to the vada theorem (1.14) very much has been introducegas
analytical function of the complex number area baiansistent due to function theory.

The use of the delta function when applying Laplaceé Fourier transformations to a fractional linequation
has been dealed with. The results are optimizedafnrental systems of propagators, which eventulihady
contain the Green's function of the inhomogenity.

The Riesz operator due to B. J. West [SWe1982]gheseful for the discussion of driftless diffusibas been
introduced as an elegantly arranged Fourier cotieoiu

The direct Mellin transformation of a linear diféettial equation often leads to a difference equatizhose
solution manifold can widely exceed beyond the MdHhansforms of Fox's H-functions.

The calculation of momenta from Laplace or Foutiansforms of a distribution function has beenddtrced.
This deal simplifies the analytical discussion emously, since the variance of a solution propagator
principally belongs to an easier function classittiee solution propagator itself.
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